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Some aspects of fully developed turbulent flow 
in non-circular ducts 

By S. C.  KACKER 
Department of MechanicaI Engineering, University of Newcastle-upon-Tyne 

(Received 31 January 1972 and in revised form 14 July 1972) 

An experimental study of fully developed uniform-density turbulent flow in 
a circular pipe containing one or two rods located off-centre is described. The 
friction factor in both cases was found to be approximately 5 % higher than the 
simple pipe friction factor. The shear stress distribution on the rod surface was 
determined using calibrated boundary-layer fences. The normalized shear stress 
distributions were independent of Reynolds number in the range 3.7 x lo4 to 
2-15 x lo5. Mean-velocity measurements were obtained to check the validity of 
the universal law of the wall near the rod surface. Secondary-flow velocities 
were measured by a hot-wire anemometer and integrated to yield the secondary- 
flow stream function. Secondary-flow velocities of the order of 1 % of the mean 
velocity were observed. In  the gap between the two pins, however, the secondary- 
flow velocities were only 4 % of the mean velocity. It is demonstrated that the 
secondary flow cannot be neglected if a force balance is used to determine the 
shear stress distribution on the rod surface. 

1. Introduction 
The coolant channels of several designs of nuclear reactor contain clusters of 

fuel pins. Knowledge of the flow in such a cluster is still far from adequate. 
Recent work on square ducts (Hoagland 1960; Brundrett & Baines 1964; 
Gessner & Jones 1965; Ying 1971) represents an important step towards im- 
proving the understanding of the flow in a reactor cluster. This is because the 
possible importance of secondary flows and their influence on other flow para- 
meters such as the mean velocity, friction factor and Stanton number has been 
recognized (Skinner, Freeman & Lyall 1969). As yet, no satisfactory analysis 
exists which would predict the magnitude of secondary flows in a cluster or in 
simple non-circular ducts such as the square duct, elliptical duct or eccentric 
annulus; but for the particular case of the square duct, Ying (1971) developed 
a program which is capable of predicting the secondary €lows, provided that the 
turbulence structure is fed in as an input. There is also disagreement in the 
literature on the law of the wall for the velocity profile over slender cylinders; 
obviously, such information is of great importance in predicting the friction 
factor and heat-transfer coeflicients for fuel pins. In  view of the lack of successful 
theoretical models, it  remains for experimental investigation to provide the 
information needed. 
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In the present study, fully developed turbulent flow in a circular pipe con- 
taining one or two rods located off-centre is examined. The main objective was 
to gain further knowledge concerning the variation of skin friction around the 
periphery of the pipe and the rods (also referred to as pins in the text), and to 
test the validity of the law of the wall for the velocity profile near the pin surface. 
Secondary-flow velocities were experimentally measured using a technique 
similar to that used by Hoagland (1 960). The question of how the presence of one 
pin influences the flow near the second pin is examined. 

Jonsson & Sparrow (1966) presented a comprehensive experimental study of 
turbulent flow in eccentric annular ducts. Although the present study describes 
experimental results for only one eccentricity, it has been possible to examine 
the assumptions made by Jonsson & Sparrow in the calculation of the shear 
stress variation around the pins; this is of considerable importance as the correct 
formulation of the law of the wall depends upon the precision of the calculated 
shear stress. 

2. The experimental apparatus 
The geometry of the duct under consideration is shown in figure 1. In the 

single-pin experiment a 1 in. diameter rod was located in a 5.683 in. diameter 
pipe. The distance s between the centres of the pin and the pipe was l*li3in. ,  
which gave an eccentricity e = s/(R, - R,.) = 0.475, where RP and R, are radius 
of curvature of the pipe and rod respectively. In the two-pin experiment, a second 
rod was located symmetrically opposite the first rod. The total length of the 
assembly was approximately 308 in., which gave development lengths for the 
single-pin and two-pin experiments of about 67 and 78 hydraulic diameters 
respectively. The working fluid was air at  atmospheric temperature and pressure. 

The layout of the test assembly is shown in figure 2. The test rig is similar to 
the one used by Lawn & Elliott (1972), who carefully checked the accuracy of 
the open-orifice flow metering device. For the details of the rig design, the reader 
should refer to Lawn (1970) and Kacker ( i971) .  In this section only important 
modifications to the rig will be described. 

The last two pipe sections of the rig were designed to enable probes to be 
traversed in any radial direction. The test section was provided with a traversing 
port in the centre of the duct through which either a Pitot tube or a hot-wire 
probe could be introduced. Traverses could be made either using a hand-operated 
micrometer or an automatic traversing gear (a DISA 5 2 B 0  1 sweep drive unit 
together with a DISA 5 5 H 0  1 traversing mechanism and a 52CO 1 stepper 
motor). A protractor was fitted on the flange of the 18in. long section. The 
traversing section could be rotated about its axis and its position could be 
recorded on the protractor. 

To make the traverses normal to the pin, the probe was introduced from the 
top of the test section. The probe was held in a vernier ring which was clamped 
onto a support concentric with the pipe. The vernier ring had slots cut in such 
a way as to allow traversing normal to the pin. 
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FIGURE 1 Geometry of the ducts. 5.683 in. I.D. pipe (thickness -&in.). Flow coming out of 
the plane of the paper. Not to scale. (a )  One-pin experiment. ( b )  Two-pin experiment. 
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FIGURE 2. Layout of the experiment. 

3. Measurement techniques 
3.1. Velocity measurements 

Mean velocities were measured using a double Pitot tube. The distance between 
the heads, which had outer diameters of &in., was approximately 0-275in. 
MacMillan's (1956) correction for displacement of the effective centre of the Pitot 
tube was applied to all the velocity readings. Pressures were recorded by an air 
flow manometer or pressure transducer (type MDC-Furness Control Ltd). 

3.2. Skin-friction sleeve 

A velocity profile near a plane surface is usually represented by a law of the wall 
having the following functional form : 

u+ = f (y+) ,  (1) 

where T I +  = U/u,, y+ = yu,/v, u, = (rs/p)3, U is the mean velocity parallel to 
the duct axis, y distance normal to a surface, 7, the wall shear stress, p the fluid 
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FIGURE 3. Design of the skin-friction sleeve. 

Fence code name A 1  A2 A 3  A4  
Dimension, h (in.) 0.0083 0.0026 0.0043 0.0057 

density and v the kinematic viscosity. There is suacient experimental evidence 
(Rao 1967; Starr & Sparrow 1967; Lawn & Elliot 1972) to suggest that the law of 
the wall holds only very near the pin surface, probably because the approximation 
of constant shear stress is a poor one beyond a certain value of y/R, where R is 
the radius of curvature of the surface in question (see 44.3). Consequently, it 
would be wrong to use any skin-friction measuring device (such as a Preston tube) 
which depends upon the knowledge of the universal velocity profile. In  the 
present experiments, a boundary-layer fence was used to determine the shear 
stress. The height of the fence was small enough for it to be sensitive to the 
velocity profile in the viscous sublayer only. The law of the wall is likely to be 
more universal in the viscous region than either in the transition region or in the 
logarithmic region. 

The design of the skin-friction sleeve incorporating the fence is shown in 
figure 3. Four sleeves A 1, A 2, A 3 and A 4 having fence heights of 0-0083in., 
0.0026 in., 0.0043 in. and 0-0057 in. were constructed. The pressure difference 
across the fence was carefully measured with a micromanometer (Combustion 
Instruments Ltd, type ‘Combist ’). It is estimated that the micromanometer is 
accurate t o  within _+ 0.0002 in. of water. 

3.3. Xecondary-$ow meter 

Previous studies of the flow in square ducts (Hoagland 1960; Brundrett & Baines 
1964; Gessner &Jones 1965; Ying 1971) have shown that the secondary velocities 
are of the order of 1 or 2 yo of the mean flow. A hot-wire technique suggested by 
Hoagland (1960) has been used by these workers and has been found to be 
sensitive enough for the measurement of small secondary velocities. I n  the 
present experiments, a secondary-flow meter designed by Hollingsworth (1967) 
on the lines suggested by Hoagland (1960) was used. Ying (1971) used the same 
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secondary-flow meter in a square duct and found that his results were in agree- 
ment with those of other workers. A new traversing system was designed for 
the meter in order to facilitate traversing in the present test section. 

Symmetry requires that the secondary-flow velocity W (see figure 1) be zero 
everywhere on the lines of symmetry 8 = 0, 180°, where 8 is the azimuthal angle 
measured at  the centre of the pipe. It was found that there was some scatter in 
the secondary-flow angle y (defined by equation (6)) at 8 = 0 and therefore 
y was measured relative to the direction 8 = 180". The sensor of the hot-wire 
probe (DISA type 55Pl1)  was a 0.118in. long, 0.0002in. diameter Pt-plated 
tungsten wire which was gold-plated at the ends to a thickness of 0.0012in., 
leaving a sensing length of 0.049 in. The gold-plated probe was found to produce 
more consistent results than an ordinary hot wire (DISA Type 5 5 F  31). This 
is perhaps due to the lower level of aerodynamic interference of the gold-plated 
probes. 

Hollingsworth (1967) quotes the sensitivity of his method as + O . l " .  It is 
difficult to estimate the accuracy of the technique. Some idea may be obtained 
from the scatter in the experimental data. A further check on the accuracy of 
the method is possible from the mass balance of the secondary flow. The net 
mass flow across any line drawn between the pipe wall and the pin surface or 
between the pipe wall and the axis of the symmetry must be zero. For a total of 
15 radial traverses, the results show that the mass imbalance occurred with 
nearly equal frequency on the positive and negative side. The standard deviation 
of the error in mass balance, expressed as a percentage of the maximum value of 
the secondary-flow stream function, was found to be 9 %. In view of the small 
secondary flows present, this level of error is considered acceptable. 

4. Results and discussion 
4.1. Friction factor 

For uniform-density fully developed channel flows, measurements of the pressure 
drop and mass-flow rate enable the friction factor f to be calculated according to 
the following formula: 

where d, is the equivalent diameter of the duct, U, is the bulk velocity for the 
duct, p is the static pressure measured at  the pipe wall and x is the distance 
along the axis of the duct. 

In fully developed channel flows, dp/dx is constant, and the most common 
cause of error in the determination of the friction factor is inaccuracy in the 
measurement of the mass-flow rate. In concentric-annulus experiments, Lawn & 
Elliott (1972) have checked the calibration of the flow meter used in the present 
work. As an additional check, experimentally measured velocity profiles were 
integrated for Reynolds numbers of 2-15 x lo5 and 6.37 x lo4 to obtain the mass- 
flow rates. The values calculated in this way agreed to within 1 yo with the mass- 
flow rates obtained from the orifice meter. In view of this good agreement it is 
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FIGURE 4. Friction-factor results. Present data: 0, single pin (eccentric); x , two pins. 
a, single pin (concentric; Lawn & Elliott 1972). __ , best-fit Iine for present data, 
f = 0.0445Re-0.1s6. 

estimated that the present results for the friction factor are correct to within 
2 %  at the highest Reynolds numbers. At lower Reynolds numbers the error 
could be between 3 and 4%’ owing to slightly more scatter in the pressure 
measurements and some inaccuracies in the orifice-meter calibration at very 
low mass-flow rates. 

Friction-factor results for the single-pin and two-pin experiments are pre- 
sented in figure 4. Friction-factor data for the two-pin case are within 2 % of the 
single-pin data. This difference is of the same order as the experimental error, 
and it can be concluded Ghat, if the equivalent diameter is used as the reference 
length, the relationship between the friction factor and Reynolds number for 
both flows may be taken as 

where Re = U,d,/v. This equation gives friction factors which are approximately 
5 yo higher than Lawn’s (1970) data for pipe flow. 

From the results of Jonsson & Sparrow (1966) it  is possible to interpolate the 
friction factors to predict values for the present eccentricity. Their interpolated 
results agree to within 2 % with the present single-pin data. Figure 4 also shows 
the data of Lawn & Elliott (1972) for a concentric-annulus experiment. Because 
of the small eccentricity in the present experiment, close agreement between 
Lawn & Elliott’s data and the present data for a single pin is to be expected. 

f = 0.0445 Re-0’196, (3) 

4.2. Shear stress distribution 

The shear stress distribution on the pipe wall was obtained from Clauser’s (1956) 
chart with the assumption of a ‘ universal ’ velocity profile, which may be written 
as 

U+ = Alny++B. (4) 

The constants A and B were chosen in accordance with the recommendation 
of Pate1 (1965). It is estimated that the accuracy of the Clauser chart in the 
determination of the shear stress is about 4 Yo and 2 % a t  Reynolds numbers of 
3.7 x lo* and 2.15 x lo5 respectively. The loss in accuracy at  the lower Reynolds 
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FIGURE 5. Calibration curves for skin-friction fences. 
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Fence code name A 2  

a 
A 3  

v 
A 4  A 1  

h (in.) 0.0026 0.0043 0.0057 0.0083 

number is due to slightly higher random error in the velocity measurements. 
Because the velocity profiles are not universal near the pin surface, they cannot 
be used to determine the local shear stress on the pin. As was mentioned earlier, 
a calibrated boundary-layer fence was used to determine the shear stress dis- 
tribution. 

From dimensional arguments, the pressure difference across a fence submerged 
in a boundary layer may be correlated according to the following expression: 

where Ap is the pressure drop across the boundary-layer fence and h is the height 
of the fence. 

The form of the function is usually determined by experiment. Bradshaw & 
Gregory (1959), Hool (1956), Gadd (1960) and Trilling & Hakkinen (1955) 
found that Ap cc T,". 

In  order to obtain the calibration curves, the concentric annulus set up by 
Lawn & Elliott (1972) was used. Lawn & Elliott determined the shear stress on 
the pin by experimentally locating the zero-shear plane and performing B force 
balance on the flow area between the pin and the zero shear stress. They estimated 
a maximum error of 2 % in the pin shear stress. In  the present work the calibration 
curve for a given fence was obtained by recording the pressure drop Ap across the 
fence at  various mass-flow rates. The values of Ap were related to the pin shear 
stress using the results of Lawn & Elliott (1972). 
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FIGURE 6. Friction velocities &s measured by fences of different height 
in the single-pin experiment. A, 8" = 0; 0 ,  8* = 180". 

Figure 5 shows the calibration curves for four boundary-layer fences. For the 
smallest fence height of 0.0026 in., b is approximately 1-7 and for the other fences 
an average value of 1.5 may be taken. This is in good agreement with the data of 
Bradshaw & Gregory (1959). The slight shift in calibration curves for different 
fences is due to some inaccuracy in the determination of h. This will not affect 
the accuracy of the shear stress measurements as all the fences were individually 
calibrated. 

Xingle-pin data. The shear stress distribution on the pin surface was obtained 
using all four different fences. Figure 6 shows the results at Reynolds numbers of 
2.15 x lo5 and 1-36 x lo5 for 0" = 0 and 180" (where 0" is the azimuthal angle 
measured at  the centre of the rod, see figure 1). The maximum deviation in the 
local friction velocity u,* on the rod surface is not more than 2.5 % for a nearly 
fourfold variation in the fence height. After this check that all the fences gave 
consistent results, subsequent runs were done with fence A l ,  which had 
h = 0.0083in. 

Normalized shear stress distributions on the pin surface and the pipe wall at  
Reynolds numbers of 2.15 x lo5, 1-36 x lo5, 6.37 x lo4 and 3.7 x lo4 are shown in 
figure 7. The average shear stresses u,* and for the rod and pipe surface, 
respectively, were derived from integrating the shear stress distributions obtained 
using the fence. It is interesting to note that the maximum shear stress on the 
pin does not occur at  0" = 180" but a t  0" = 120". Similar behaviour was noted 
by Leutheusser (1963) in square ducts. He found that the point of maximum 
shear stress occurs nearly half way between the corner of the duct and the centre 
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of the duct side. The normalized shear stress distributions on the pipe wall and 
pin surface do not show any systematic trend with respect to Reynolds number. 
On the pipe wall, the maximum shear stress occurs at  8 = 180", and is nearly 13 % 
higher than the shear stress at  8 = 0. 

Two-pin data. Since no Reynolds-number dependence was observed for the 
single-pin experiment, the shear stress distributions for the two-pin duct were 
obtained at  the Reynolds number of 1.77 x lo5 only. The shear stress distributions 
around the two pins agreed to within 2 yo. This shows that the flow was sym- 
metrical in the four quadrants. Figure 8 shows the normalized shear stress 
distribution around the pin for positive and negative values of 8"; the two 
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(b)  

distributions agreed well with each other. Figure 8 also shows the normalized 
shear stress on the pipe surface. 

It is interesting to compare the shear stress distributions for the single-pin 
and two-pin ducts. For the two-pin geometry, the maximum shear stress on 
the pin occurred at  8" = 180' as compared with 8" = 120" in the case of the 
single-pin and the shear stress distribution between 8" = 45' and 120' wag more 
uniform. The maximum variation in the pipe-surface shear stress was only I0 yo 
in this case, as compared with 13 % for the single-pin case. 

Accuracy. The shear stress distributions presented in figures 7 and 8 can be 
used to calculate the average frictional forces acting on the pipe wall and the 
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FIGURE 9. Axial-velocity contours. ( a )  Re = 2.15 x lo6, Urn, = 104*5ft/s, 
U,,jU, = 1.17. ( b )  Re = 1.77 x lo6, U,, = 94'5ft/s, Um,/Ub = 1.15. 
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pin surface. For fully developed uniform-density duct flows, the sum of frictional 
forces must be balanced by the pressure gradient. In  the present investigation, 
the maximum error in the force balance was 3 %. 

4.3. Velocity distributions 

Velocity profiles for the single-pin experiment were obtained at  four Reynolds 
numbers: 2.15 x lo5, 1.35 x lo5, 0.637 x lo5 and 0.379 x lo5. It is convenient to 
present the velocity profiles as plots of equivelocity contours, usually called 
'isovels'. The general shape of the contour plots is very similar for different 
Reynolds numbers. However, the ratio of the maximum velocity to the bulk 
velocity (Umax/Ub) was 1.13 a t  Re-= 2 . 1 5 ~  lo5, as compared with 1.16 at 
R e  = 0.37 x 105. This suggests that a higher Reynolds number the flow is more 
uniform. A similar trend was observed by Ying (1971) in square ducts, Lawn & 
Elliott (1972) in concentric annuli and Lawn (1970) in a circular pipe. 

For the case of the two-pin geometry, the isovel contour plot was obtained at  
a Reynolds number of 1-77 x lo5 only. Since the flow was symmetrical in the four 
quadrants, velocity profiles were obtained in only one quadrant. However, the 
symmetry of the velocity profiles was checked and found to be not worse than 
& 1 yo in either experiment, being slightly better than this in the single-pin case. 

Velocity contour plots are presented in figure 9 for the single-pin and two-pin 
cases at  Reynolds numbers of 2.15 x lo5 and 1.77 x lo5 respectively. The locations 
and magnitudes of the maximum velocities are shown in the diagram. 

Velocity profiles normal to the pin surface are presented in non-dimensional 
U+, y+ co-ordinates in figure 10 (a)  for the single-pin geometry at  R e  = 2.15 x i05 
and in figure 10(b)  for the two-pin case a t  R e  = 1.77 x lo5. A line representing the 
universal law of the wall U+ = 5.5 log,, y+ + 5.45 is shown in each figure. The 
deviations from the universal law of the wall are smallest for 8" = 30" and 60". 
In  general, the velocity profiles deviate more from the universal law of the wall 
in the two-pin geometry than in the single-pin case. These deviations can be 
attributed to the following. 

(i) The effect of the radius of curvature, characterized by ylRr. This embraces 
the effect of rapidly falling shear stress near the surface, as well as any ' direct ' 
effect of curvature on the velocity profile. 

(ii) Secondary flows. The Reynolds number u,* RJv did not differ by more 
than 5 %  in the two cases so the law of the wall would be expected to hold in 
the same range of y+. It may be concluded that the secondary flow has some 
influence on the U+, y+ curve, because the differences in U+ between the two 
cases and between different azimuthal positions in the range y f  6 100 ( y / R ,  5 0.1) 
are significant. 

For the single-pin geometry, further U+, y+ curves were obtained at  Reynolds 
numbers of 1.35 x lo5 and 0.637 x lo5; these were found to be similar to the 
velocity profiles at  R e  = 2.15 x lo5. Within the range of the experiments, u: R,/v 
was varied from 350 to 1100 and no systematic trend could be noted in the U+, y+ 
curve. In order to 'decouple' the shear stress variation from any possible effects 
which are directly related to the surface curvature, it would be necessary to test 
a range of radius ratios (see Lawn & Elliott 1972). 
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FIGURE 11. Comparison between present shear stress results and the shear stress calculated 
using Jonsson & Sparrow’s method for single-pin geometry. ~ , mean line through 
present experimental results; --, Jonsson & Sparrow’s method. ( a )  Pipe surface. ( 6 )  Pin 
surface. 

4.4. Jonsson & Sparrow’s method for the calculation of 
shear stress distribution 

Jonsson & Sparrow (1 966) employed velocity contour diagrams for the calcula- 
tion of the shear stress distribution on the pipe wall and pin surface. They assumed 
that the shear stress is zero on the lines normal to isovels and on the maximum- 
velocity surface. By a force balance with the pressure gradient acting on flow 
areas enclosed by the walls and zero-shear surfaces, they then obtained the 
shear stress distribution on the pipe wall and pin surface. They also had t o  
assume that there are no secondary flows: i.e. no transfer of mean-flow momentum 
takes place across the lines deemed to be those of zero shear. Figure 1 I shows the 
comparison between the experimentally measured shear stress distribution and 
the shear stress distribution calculated using Jonsson & Sparrow’s method. On 
the pipe wall the agreement between the experiments and the calculations is 
reasonable. However, on the pin surface the calculations predict a much larger 
variation in the shear stress than that observed experimentally. This discrepancy 
was significant enough t o  warrant a closer look a t  the assumptions made by 
Jonsson & Sparrow. The three factors which may be responsible for the dis- 
crepancy between the experiments and the calculations are as follows. 

(i) The surface on which the velocity is a maximum is not necessarily that on 
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which the shear stress is zero. Lawn & Elliott’s data (1972) for concentric annuli 
and Kacker’s data (1971) for the eccentric annulus are sufficient proof in this 
respect. 

(ii) The planes normal to isovels have shear stresses acting on them. They 
cannot be neglected in a force balance. 

(iii) It will be shown in the next section that secondary flows are present in 
the eccentric annulus which transfer mean momentum across the planes of zero 
shear, the planes of maximum velocity and the planes which are normal to the 
isovels. The secondary flows are generated in such a way as to make the shear 
stress distribution on the pin more uniform than the one obtained by the calcula- 
tions of Jonsson & Sparrow. 

4.5. Secondary-$ow distribution 

As was mentioned in 33.3, the secondary-flow angles were measured using 
a method due to Hoagland (1960). All the traverses were normal to the pipe 
wall. The measured secondary-flow angle y is related to the mean velocity U 
and the secondary-flow velocity W as follows: 

W = Utan(y). (6) 

Secondary-flow velocities obtained from (6) were used to calculate a secondary- 
flow stream function $ defined as follows: 

where r denotes the radial distance of a point from the centre of the pipe. 

differential form as 
Since V and W are continuous everywhere in the flow, $ may be written in 

In terms of V and W 

On integration (9) yields 
d$ = Wdr-rVdB.  

fj,cons tant 

or 

Only the distribution of W was measured, and from this the $ distribution 
was calculated using (10). The present traversing system did not allow the 
velocity V to be measured: these measurements would of course have provided 
an additional check on the $ distribution calculated from (1 1) .  

The secondary-flow angles were measured for the single-pin geometry at  
Reynolds numbers of 6.37 x lo4 and 2-15 x lo5. The flow angles in most of the 
flow field are typically of the order of 8”. Near the pin, maximum flow angles of 
approximately lo were measured. The distribution of secondary-flow velocities 
W is shown in figure 12. These have been normalized by the maximum friction 
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FIGURE 12. Secondary-flow velocities in the single-pin duct. 0, Re = 6.37 x lo4; x , 
Re = 2.15 x 105. (a) 8 = lo". ( b )  8 = 20". (c) 8 = 30". (d )  8 = 45". ( e )  8 = 60". ( f )  8 = 90". 
( 9 )  = 120". (h) 8 = 150". 

velocity a$' measured on the pipe surface, which occurred at  6 = 180". Within 
the experimental scatter there does not appear to be any trend in the dis- 
tributions of WIu;' with Reynolds number. Since the ratio of a$' to 2 (where 2 
is average friction velocity for the duct) is also independent of Reynolds number, 
it  may be concluded that, if W profiles were to be normalized by the average 
friction velocity, the normalized curves would also be independent of Reynolds 
number. 

Hoagland (1960) normalized his secondary velocities by the bulk velocity and 
found no dependence of Reynolds number. However, Gessner & Jones (1965) 
concluded that the friction velocity is a more appropriate scaling parameter. 
In the present investigation within the range of Reynolds number, u*/U, changes 
by only 12 yo. 

The accuracy of W is not good enough to determine whether2  or U, is the 
proper scaling factor for the secondary velocities. Ying (197 1) measured secondary 
velocities in a rough channel and a smooth one, and thus he was able to obtain 
a large variation of Flu, (although the variation in Reynolds number was only 
four fold). His results show that the friction velocity is a better scaling parameter 
because the secondary-flow data of both the channels when normalized with the 
friction velocity give the same results. 

The distribution of the secondary-flow stream function $ is shown in figure 
13 for Reynolds numbers of 6.37 x lo4 and 2.15 x lo5. The @ distributions at  the 
two Reynolds numbers are similar in shape; both have one circulating flow cell. 
The secondary flows are generated by turbulence in such a way as to take fluid 
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FIGURE 

Axis of syiniiietry 

Secondary-flow streamlines a t  ( a )  Re = 6-37 x lo4 = 1.23 x . ~~ ft2/s) and 
(5) Re = 2.15 x lo6 ($-= 4-8 x 10-2ft2/s) for the single-pin geometry. -, mean line 
through experimentd points. 
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FIGURE 14. Measured secondary-flow velocities for the two-pin experiment a t  Re = 1.77 x 106 
0, experimental points; - , mean line through experimental points. (a )  0 = 90". 
( b )  o = soo. (c) e= 600. ( d )  e = 600, (e )  e = 30". (j) o = 200. (9) e = 10". 
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Axis of symmetry 

FIGURE 15. Distribution of secondary-flow stream function measured m the two-pm duct. 
(Only one quadrant shown.) -, mean line through experimentalpoints; 21.,, = 0425ft2is; 
Re = 1-77 x lo6. 
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momentum from the region of high velocity (largest gap a t  6' = 180") to the region 
of low velocity (smallest gap a t  6' = 0) .  This pattern is similar to the stream 
function distribution observed in square ducts, where the secondary flow 
transfers $he momentum from the centre of the duct to the corner region. 

In the case of the two-pin geometry, secondary-flow angles were measured at  
a Reynolds number of 1-77 x lo5. The magnitude of the secondary-flow angles 
is of the same order as those obtained for the single-pin geometry. The normalized 
secondary-flow velocities are shown in figure 14. In  this case the normalizing 
velocity is u:", which is the maximum pipe wall friction velocity, a t  6' = 90". 
The distribution of the secondary-flow velocities and the flow angles in the two- 
pin case is different from the distribution obtained in the single-pin geometry. 
This is more obvious from the stream function distribution shown in figure 15. 
The figure shows that, in addition to the flow cell which is present in the single-pin 
geometry, one finds a second cell sandwiched between the centre of the pipe 
and the pin. The total flow in the second cell is nearly 60 yo of the flow in the 
larger cell. 

All the previous measurements of secondary flows (Hoagland 1960; Leutheusser 
1963; Brundrett & Baines 1964; Ying 1971) were made in ducts having corners. 
Hoagland and Ying have reported hot-wire probe interference in the measure- 
ment of secondary flows in the presence of corners. Fortunately, present measure- 
ments of secondary flows do not suffer from any probe interference, and con- 
sequently they have a slightly better accuracy. 
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5. Conclusions 
(i) The use of an equivalent diameter in the definition of the Reynolds number 

and friction factor enables the equation f = 0-0445 Re-O'lg6 to represent the data 
to within 2 % for both the single-pin and two-pin geometries. The friction-factor 
data for the single-pin case (or eccentric annulus) is nearly 5 % higher than the 
pipe friction factor (Lawn 1970). 

(ii) The shear stress distribution on the pin and pipe surface, if normalized 
by the average surface shear stress, is independent of Reynolds number within 
the Reynolds-number range 3.73 x lo4 to 2.15 x lo5. For the single-pin and 
two-pin ducts, the shear stress variation on the pipe and the pin surface was 
typically of the order of 12 yo and 8 yo respectively. The very nearly uniform 
value of the wall shear stress around the core tube for the single-pin and 
two-pin arrangements is due to increased momentum transfer by the secondary 
flow. 

(iii) Calculated shear stress distributions based upon Jonsson & Sparrow's 
(1966) method do not agree with the experimental shear stress distributions 
mainly because their method neglects momentum transfer by the secondary 
flows. 

(iv) U+, yf plots near the pin surface deviate from the universal law of the 
wall, typically by 6 yo and 3 yo for the two-pin and single-pin ducts respectively. 

(v) Two secondary-flow cells were observed in the two-pin duet as compared 
to one in the single-pin case. 

The work described in this paper was carried out a t  Berkeley Nuclear 
Laboratories, Central Electricity Generating Board, Berkeley, England. The 
author wishes to thank Mr C. J. Lawn of Berkeley Nuclear Laboratories for 
many useful discussions. 
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