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Some aspects of fully developed turbulent flow
in non-circular ducts
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An experimental study of fully developed uniform-density turbulent flow in
a circular pipe containing one or two rods located off-centre is described. The
friction factor in both cases was found to be approximately 5 9%, higher than the
simple pipe friction factor. The shear stress distribution on the rod surface was
determined using calibrated boundary-layer fences. The normalized shear stress
distributions were independent of Reynolds number in the range 3-7 x 10% to
2-15 x 105, Mean-velocity measurements were obtained to check the validity of
the universal law of the wall near the rod surface. Secondary-flow velocities
were measured by a hot-wire anemometer and integrated to yield the secondary-
flow stream function. Secondary-flow velocities of the order of 19, of the mean
velocity were observed. In the gap between the two pins, however, the secondary-
flow velocities were only 4 9, of the mean velocity. I't is demonstrated that the
secondary flow cannot be neglected if a force balance is used to determine the
shear stress distribution on the rod surface.

1. Introduction

The coolant channels of several designs of nuclear reactor contain clusters of
fuel pins. Knowledge of the flow in such a cluster is still far from adequate.
Recent work on square ducts (Hoagland 1960; Brundrett & Baines 1964;
Gessner & Jones 1965; Ying 1971) represents an important step towards im-
proving the understanding of the flow in a reactor cluster. This is because the
possible importance of secondary flows and their influence on other flow para-
meters such as the mean velocity, friction factor and Stanton number has been
recognized (Skinner, Freeman & Lyall 1969). As yet, no satisfactory analysis
exists which would predict the magnitude of secondary flows in a cluster or in
simple non-circular ducts such as the square duct, elliptical duct or eccentric
annulus; but for the particular case of the square duct, Ying (1971) developed
a program which is capable of predicting the secondary flows, provided that the
turbulence structure is fed in as an input. There is also disagreement in the
literature on the law of the wall for the velocity profile over slender cylinders;
obviously, such information is of great importance in predicting the frietion
factor and heat-transfer coefficients for fuel pins. In view of the lack of successful
theoretical models, it remains for experimental investigation to provide the
information needed.
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In the present study, fully developed turbulent flow in a circular pipe con-
taining one or two rods located off-centre is examined. The main objective was
to gain further knowledge concerning the variation of skin friction around the
periphery of the pipe and the rods (also referred to as pins in the text), and to
test the validity of the law of the wall for the velocity profile near the pin surface.
Secondary-flow velocities were experimentally measured using a technique
similar to that used by Hoagland (1960). The question of how the presence of one
pin influences the flow near the second pin is examined.

Jonsson & Sparrow (1966) presented a comprehensive experimental study of
turbulent flow in eccentric annular ducts. Although the present study describes
experimental results for only one eccentricity, it has been possible to examine
the assumptions made by Jonsson & Sparrow in the calculation of the shear
stress variation around the pins; this is of considerable importance as the correct
formulation of the law of the wall depends upon the precision of the calculated
shear stress.

2. The experimental apparatus

The geometry of the duct under consideration is shown in figure 1. In the
single-pin experiment a 1in. diameter rod was located in a 5-683 in. diameter
pipe. The distance s between the centres of the pin and the pipe was 1-113in.,
which gave an eccentricity e = s/(B, — R,) = 0-475, where R, and R, are radius
of curvature of the pipe and rod respectively. In the two-pin experiment, a second
rod was located symmetrically opposite the first rod. The total length of the
assembly was approximately 308in., which gave development lengths for the
single-pin and two-pin experiments of about 67 and 78 hydraulic diameters
respectively. The working fluid was air at atmospheric temperature and pressure.

The layout of the test assembly is shown in figure 2. The test rig is similar to
the one used by Lawn & Elliott (1972), who carefully checked the accuracy of
the open-orifice flow metering device. For the details of the rig design, the reader
should refer to Lawn (1970) and Kacker (1971). In this section only important
modifications to the rig will be described.

The last two pipe sections of the rig were designed to enable probes to be
traversed in any radial direction. The test section was provided with a traversing
port in the centre of the duct through which either a Pitot tube or a hot-wire
probe could be introduced. Traverses could be made either using a hand-operated
micrometer or an automatic traversing gear (a DISA 52BO 1 sweep drive unit
together with a DISA 55HO 1 traversing mechanism and a 52CO 1 stepper
motor). A protractor was fitted on the flange of the 18in. long section. The
traversing section could be rotated about its axis and its position could be
recorded on the protractor.

To make the traverses normal to the pin, the probe was introduced from the
top of the test section. The probe was held in a vernier ring which was clamped
onto a support concentric with the pipe. The vernier ring had slots cut in such
a way as to allow traversing normal to the pin.
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FigUure 1 Geometry of the ducts. 5-683in. 1.D. pipe (thickness -5 in.). Flow coming out of
the plane of the paper. Not to scale. (a) One-pin experiment. (6) Two-pin experiment.
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F1cure 2. Layout of the experiment.

3. Measurement techniques

3.1. Velocity measurements
Mean velocities were measured using a double Pitot tube. The distance between
the heads, which had outer diameters of ;% in., was approximately 0-275 in.
MacMillan’s (1956) correction for dlsplacement of the effective centre of the Pitot
tube was applied to all the veloeity readings. Pressures were recorded by an air
flow manometer or pressure transducer (type MDC-Furness Control Ltd).

3.2. Skin-friction sleeve

A velocity profile near a plane surface is usually represented by a law of the wall
having the following functional form:

U+ = fly*), (1)

where Ut = Ulfu,, y+ = yu,/v, 4, = (74/p)}, U is the mean velocity parallel to
the duct axis, y distance normal to a surface, 7, the wall shear stress, p the fluid
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Ficure 3. Design of the skin-friction sleeve.

Fence code name At A2 A3 A4
Dimension, % (in.) 0-0083 0-0026 0-0043 0-0057

density and v the kinematic viscosity. There is sufficient experimental evidence
(Rao 1967; Starr & Sparrow 1967; Lawn & Elliot 1972) to suggest that the law of
the wall holds only very near the pin surface, probably because the approximation
of constant shear stress is a poor one beyond a certain value of y/R, where R is
the radius of curvature of the surface in question (see §4.3). Consequently, it
would be wrong to use any skin-friction measuring device (such as a Preston tube)
which depends upon the knowledge of the universal velocity profile. In the
present experiments, a boundary-layer fence was used to determine the shear
stress. The height of the fence was small enough for it to be sensitive to the
velocity profile in the viscous sublayer only. The law of the wall is likely to be
more universal in the viscous region than either in the transition region or in the
logarithmic region.

The design of the skin-friction sleeve incorporating the fence is shown in
figure 3. Four sleeves 41, 42, 43 and 4 4 having fence heights of 0-0083in.,
0-00261in., 0-0043in. and 0-0057in. were constructed. The pressure difference
across the fence was carefully measured with a micromanometer (Combustion
Instruments Ltd, type ‘Combist’). It is estimated that the micromanometer is
accurate to within + 00002 in. of water.

3.3. Secondary-flow meter

Previous studies of the flow in square ducts (Hoagland 1960; Brundrett & Baines
1964; Gessner & Jones 1965; Ying 1971) have shown that the secondary velocities
are of the order of 1 or 2 9, of the mean flow. A hot-wire technique suggested by
Hoagland (1960) has been used by these workers and has been found to be
sensitive enough for the measurement of small secondary velocities. In the
present experiments, a secondary-flow meter designed by Hollingsworth (1967)
on the lines suggested by Hoagland (1960) was used. Ying (1971) used the same
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secondary-flow meter in a square duct and found that his results were in agree-
ment with those of other workers. A new traversing system was designed for
the meter in order to facilitate traversing in the present test section.

Symmetry requires that the secondary-flow velocity W (see figure 1) be zero
everywhere on the lines of symmetry 6 = 0, 180°, where 6 is the azimuthal angle
meagsured at the centre of the pipe. It was found that there was some scatter in
the secondary-flow angle y (defined by equation (6)) at § = 0 and therefore
v was measured relative to the direction 8 = 180°. The sensor of the hot-wire
probe (DISA type 55F11) was a 0-118in. long, 0-0002in. diameter Pt-plated
tungsten wire which was gold-plated at the ends to a thickness of 0-0012in.,
leaving a sensing length of 0-049in. The gold-plated probe was found to produce
more consistent results than an ordinary hot wire (DISA Type 55 F 31). This
is perhaps due to the lower level of aerodynamic interference of the gold-plated
probes.

Hollingsworth (1967) quotes the sensitivity of his method as +0-1°. It is
difficult to estimate the accuracy of the technique. Some idea may be obtained
from the scatter in the experimental data. A further check on the accuracy of
the method is possible from the mass balance of the secondary flow. The net
mass flow across any line drawn between the pipe wall and the pin surface or
between the pipe wall and the axis of the symmetry must be zero. For a total of
15 radial traverses, the results show that the mass imbalance occurred with
nearly equal frequency on the positive and negative side. The standard deviation
of the error in mass balance, expressed as a percentage of the maximum value of
the secondary-flow stream function, was found to be 99%,. In view of the small
secondary flows present, this level of error is considered acceptable.

4. Results and discussion
4.1. Friction factor

For uniform-density fully developed channel flows, measurements of the pressure
drop and mass-flow rate enable the friction factor f to be calculated according to
the following formula:
(—dp/dz)d,

I==m @
where d, is the equivalent diameter of the duct, U, is the bulk velocity for the
duect, p is the static pressure measured at the pipe wall and x is the distance
along the axis of the duct.

In fully developed channel flows, dp/dx is constant, and the most common
cause of error in the determination of the friction factor is inaccuracy in the
measurement of the mass-flow rate. In concentric-annulus experiments, Lawn &
Elliott (1972) have checked the calibration of the flow meter used in the present
work. As an additional check, experimentally measured velocity profiles were
integrated for Reynolds numbers of 2-15 x 105 and 6-37 x 10* to obtain the mass-
flow rates. The values calculated in this way agreed to within 1 9, with the mass-
flow rates obtained from the orifice meter. In view of this good agreement it is
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A, single pin (concentric; Lawn & Elliott 1972). , best-fit line for present data,
f = 0-0445Re0-195,

estimated that the present results for the friction factor are correct to within
29, at the highest Reynolds numbers. At lower Reynolds numbers the error
could be between 3 and 49, owing to slightly more scatter in the pressure
measurements and some inaccuracies in the orifice-meter calibration at very
low mass-flow rates.

Friction-factor results for the single-pin and two-pin experiments are pre-
sented in figure 4. Friction-factor data for the two-pin case are within 2%, of the
single-pin data. This difference is of the same order as the experimental error,
and it can be concluded that, if the equivalent diameter is used as the reference
length, the relationship between the friction factor and Reynolds number for
both flows may be taken as

f = 00445 Re—01%, (3)

where Re = U, d,/v. This equation gives friction factors which are approximately
5%, higher than Lawn’s (1970) data for pipe flow.

From the results of Jonsson & Sparrow (1966) it is possible to interpolate the
friction factors to predict values for the present eccentricity. Their interpolated
results agree to within 2 %, with the present single-pin data. Figure 4 also shows
the data of Lawn & Elliott (1972) for a concentric-annulus experiment. Because
of the small eccentricity in the present experiment, close agreement between
Lawn & Elliott’s data and the present data for a single pin is to be expected.

4.2. Shear stress distribution

The shear stress distribution on the pipe wall was obtained from Clauser’s (1956)
chart with the assumption of a ‘universal’ velocity profile, which may be written

as
Ut=Alny*t+B. (4)
The constants 4 and B were chosen in accordance with the recommendation
of Patel (1965). It is estimated that the accuracy of the Clauser chart in the

determination of the shear stress is about 4 9 and 2 9%, at Reynolds numbers of
3-7 x 10* and 2-15 x 10° respectively. The loss in accuracy at the lower Reynolds
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Fieure 5. Calibration curves for skin-friction fences.
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number is due to slightly higher random error in the velocity measurements.
Because the velocity profiles are not universal near the pin surface, they cannot
be used to determine the local shear stress on the pin. As was mentioned earlier,
a calibrated boundary-layer fence was used to determine the shear stress dis-
tribution.

From dimensional arguments, the pressure difference across a fence submerged
in a boundary layer may be correlated according to the following expression:

Ap (R\? k)z
F) =) @)
where Ap is the pressure drop across the boundary-layer fence and % is the height
of the fence.

The form of the function is usually determined by experiment. Bradshaw &
Gregory (1959), Hool (1956), Gadd (1960) and Trilling & Hakkinen (1955)
found that Ap oc 72.

In order to obtain the calibration curves, the concentric annulus set up by
Lawn & Elliott (1972) was used. Lawn & Elliott determined the shear stress on
the pin by experimentally locating the zero-shear plane and performing a force
balance on the flow area between the pin and the zero shear stress. They estimated
amaximum error of 2 %, in the pin shear stress. In the present work the calibration
curve for a given fence was obtained by recording the pressure drop Ap across the
fence at various mass-flow rates. The values of Ap were related to the pin shear
stress using the results of Lawn & Elliott (1972).
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Figure 5 shows the calibration curves for four boundary-layer fences. For the
smallest fence height of 0-0026in., b is approximately 1-7 and for the other fences
an average value of 15 may be taken. This is in good agreement with the data of
Bradshaw & Gregory (1959). The slight shift in calibration curves for different
fences is due to some inaccuracy in the determination of &. This will not affect
the accuracy of the shear stress measurements as all the fences were individually
calibrated.

Single-pin data. The shear stress distribution on the pin surface was obtained
using all four different fences. Figure 6 shows the results at Reynolds numbers of
2-15 x 10° and 1-36 x 105 for 6* = 0 and 180° (where 0* is the azimuthal angle
measured at the centre of the rod, see figure 1). The maximum deviation in the
local friction velocity «;° on the rod surface is not more than 2-5 %, for a nearly
fourfold variation in the fence height. After this check that all the fences gave
consistent results, subsequent runs were done with fenee 41, which had
h = 0-0083in.

Normalized shear stress distributions on the pin surface and the pipe wall at
Reynolds numbers of 2-15 x 10%, 1-36 x 105, 6-37 x 10* and 3-7 x 10* are shown in
figure 7. The average shear stresses u; and ’LE for the rod and pipe surface,
respectively, were derived from integrating the shear stress distributions obtained
using the fence. It is interesting to note that the maximum shear stress on the
pin does not oceur at 8* = 180° but at 6* = 120°, Similar behaviour was noted
by Leutheusser (1963) in square ducts. He found that the point of maximum
shear stress oceurs nearly half way between the corner of the duct and the centre
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F1cURE 7. Shear stress distributions on (a) the pin surface and (b) the pipe wall for the single-
pin experiment. , mean line through experimental points.

O A Y O
Rex 105 2-15 1-36 0-637 0-373
(@) u* (ftfs) 4-29 2.78 1-47 0-96
(b) w¥ (ft/s) 3794 2:52 1-31 0-786

of the duct side. The normalized shear stress distributions on the pipe wall and
pin surface do not show any systematic trend with respect to Reynolds number.
On the pipe wall, the maximum shear stress occurs at = 180°, and isnearly 13 9
higher than the shear stress at 6 = 0.

Two-pin data. Since no Reynolds-number dependence was observed for the
single-pin experiment, the shear stress distributions for the two-pin duct were
obtained at the Reynolds number of 1-77 x 10° only. The shear stress distributions
around the two pins agreed to within 2 %,. This shows that the flow was sym-
metrical in the four quadrants. Figure 8 shows the normalized shear stress
distribution around the pin for positive and negative values of 6*; the two
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Ficure 8. Shear stress distributions on (a) the pin surface and (b) the pipe wall for the
two-pin experiment; Re = 1-77 x 105, (a) O, —60*%; A, 0*; , mean line through ex-
perimental points; ) = 4-364ft/s. (b) O, experimental points;

, mean line through

experimental points; 1} = 3-8ft/s.

distributions agreed well with each other. Figure 8 also shows the normalized
shear stress on the pipe surface.

It is interesting to compare the shear stress distributions for the single-pin
and two-pin ducts. For the two-pin geometry, the maximum shear stress on
the pin occurred at 6* = 180° as compared with 6* = 120° in the case of the
single-pin and the shear stress distribution between 6* = 45° and 120° was more
uniform. The maximum variation in the pipe-surface shear stress was only 109,
in this case, as compared with 13 9, for the single-pin case.

Accuracy. The shear stress distributions presented in figures 7 and 8 can be
used to calculate the average frictional forces acting on the pipe wall and the
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pin surface. For fully developed uniform-density duct flows, the sum of frictional
forces must be balanced by the pressure gradient. In the present investigation,
the maximum error in the force balance was 3 %,.

4.3. Velocity distributions

Velocity profiles for the single-pin experiment were obtained at four Reynolds
numbers: 2-15 x 105, 1-35 x 105, 0-637 x 10° and 0-379 x 105, It is convenient to
present the velocity profiles as plots of equivelocity contours, usually called
‘isovels’. The general shape of the contour plots is very similar for different
Reynolds numbers. However, the ratio of the maximum velocity to the bulk
velocity (Umax/U,) was 1-13 at Re = 2-15x 105, as compared with 1-16 at
Re = 0-37 x 105, This suggests that a higher Reynolds number the flow is more
uniform. A similar trend was observed by Ying (1971) in square ducts, Lawn &
Elliott (1972) in concentric annuli and Lawn (1970) in a circular pipe.

For the case of the two-pin geometry, the isovel contour plot was obtained at
a Reynolds number of 1-77 x 105 only. Since the flow was symmetrical in the four
quadrants, velocity profiles were obtained in only one quadrant. However, the
symmetry of the velocity profiles was checked and found to be not worse than
+ 19, in either experiment, being slightly better than this in the single-pin case.

Velocity contour plots are presented in figure 9 for the single-pin and two-pin
cases at Reynolds numbers of 2-15 x 105and 1-77 x 105 respectively. The locations
and magnitudes of the maximum velocities are shown in the diagram.

Velocity profiles normal to the pin surface are presented in non-dimensional
U+, y* co-ordinates in figure 10(a) for the single-pin geometry at Re = 2-15 x 105
and in figure 10 (b) for the two-pin case at Re = 1-77 x 10%. A line representing the
universal law of the wall U+ = 5-5log,,y* + 5-45 is shown in each figure. The
deviations from the universal law of the wall are smallest for 6% = 30° and 60°.
In general, the velocity profiles deviate more from the universal law of the wall
in the two-pin geometry than in the single-pin case. These deviations can be
attributed to the following.

(i) The effect of the radius of curvature, characterized by y/Rr. This embraces
the effect of rapidly falling shear stress near the surface, as well as any ‘direct’
effect of curvature on the velocity profile.

(ii) Secondary flows. The Reynolds number % R,/v did not differ by more
than 59, in the two cases so the law of the wall would be expected to hold in
the same range of y*. It may be concluded that the secondary flow has some
influence on the U+, y+ curve, because the differences in U+ between the two
cases and between different azimuthal positionsin the range y* < 100 (y/R, < 0-1)
are significant.

For the single-pin geometry, further U+, y* curves were obtained at Reynolds
numbers of 1-35 x 105 and 0-637 x 105; these were found to be similar to the
velocity profiles at Re = 2-15 x 105, Within the range of the experiments, u,* R, /v
was varied from 350 to 1100 and no systematic trend could be noted inthe U+, y+
curve. In order to ‘decouple’ the shear stress variation from any possible effects
which are directly related to the surface curvature, it would be necessary to test
a range of radius ratios (see Lawn & Elliott 1972).
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Ficure 11. Comparison between present shear stress results and the shear stress calculated
using Jonsson & Sparrow’s method for single-pin geometry. , mean line through
present experimental results; ——, Jonsson & Sparrow’s method. (a) Pipe surface. (b) Pin
surface.

4.4, Jonsson & Sparrow’s method for the calculation of
shear stress distribution

Jonsson & Sparrow (1966) employed velocity contour diagrams for the calcula-
tion of the shear stress distribution on the pipe wall and pin surface. They assumed
that the shear stress is zero on the lines normal to isovels and on the maximum-
velocity surface. By a force balance with the pressure gradient acting on flow
areas enclosed by the walls and zero-shear surfaces, they then obtained the
shear stress distribution on the pipe wall and pin surface. They also had to
asgsume that there are no secondary flows: i.e. no transfer of mean-flow momentum
takes place across the lines deemed to be those of zero shear. Figure 11 shows the
comparison between the experimentally measured shear stress distribution and
the shear stress distribution calculated using Jonsson & Sparrow’s method. On
the pipe wall the agreement between the experiments and the calculations is
reasonable. However, on the pin surface the calculations predict a much larger
variation in the shear stress than that observed experimentally. This discrepancy
was significant enough to warrant a closer look at the assumptions made by
Jonsson & Sparrow. The three factors which may be responsible for the dis-
crepancy between the experiments and the calculations are as follows.

(1) The surface on which the velocity is a maximum is not necessarily that on
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which the shear stress is zero. Lawn & Elliott’s data (1972) for concentric annuli
and Kacker’s data (1971) for the eccentric annulus are sufficient proof in this
respect.

(ii) The planes normal to isovels have shear stresses acting on them. They
cannot be neglected in a force balance.

(iii) Tt will be shown in the next section that secondary flows are present in
the eccentric annulus which transfer mean momentum across the planes of zero
shear, the planes of maximum velocity and the planes which are normal to the
isovels. The secondary flows are generated in such a way as to make the shear
stress distribution on the pin more uniform than the one obtained by the calcula-
tions of Jonsson & Sparrow.

4.5. Secondary-flow distribution

As was mentioned in §3.3, the secondary-flow angles were measured using
a method due to Hoagland (1960). All the traverses were normal to the pipe
wall. The measured secondary-flow angle v is related to the mean velocity U
and the secondary-flow velocity W as follows:

W = Utan (7). (6)

Secondary-flow velocities obtained from (6) were used to calculate a secondary-
flow stream function ¥ defined as follows:
oy 1oy
where 7 denotes the radial distance of a point from the centre of the pipe.
Since V and W are continuous everywhere in the flow, i may be written in
differential form as

o oY
dyfr = - dr+% do. (8)
In terms of Vand W
df = Wdr—rVdo. (9)

On integration (9) yields
, (10)

g=constant

Y= ‘fr W dr

{JO

]
f vV do
0

Only the distribution of W was measured, and from this the i distribution
was calculated using (10). The present traversing system did not allow the
velocity V to be measured: these measurements would of course have provided
an additional check on the i distribution calculated from (11).

The secondary-flow angles were measured for the single-pin geometry at
Reynolds numbers of 6-37 x 10* and 2-15 x 10°. The flow angles in most of the
flow field are typically of the order of 1°. Near the pin, maximum flow angles of
approximately 1° were measured. The distribution of secondary-flow velocities
W is shown in figure 12. These have been normalized by the maximum friction

or = — (11)

r=constant
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Ficure 12, Secondary-flow velocities in the single-pin duct. O, Re = 6-37x 10%; x,

Re = 2-15 x 105. (a) 0 = 10°. (b) 6 = 20°. (c) 6 = 30°. (d) 0 = 45°. (e) O = 60°. (f) 6 = 90°.
(g) = 120°. (k) O = 150°.

velocity u% measured on the pipe surface, which occurred at 6 = 180°. Within
the experimental scatter there does not appear to be any trend in the dis-
tributions of W/u* with Reynolds number. Since the ratio of «} to u* (where u*
is average friction velocity for the duct) is also independent of Reynolds number,
it may be concluded that, if W profiles were to be normalized by the average
friction velocity, the normalized curves would also be independent of Reynolds
number.

Hoagland (1960) normalized his secondary velocities by the bulk velocity and
found no dependence of Reynolds number. However, Gessner & Jones (1965)
concluded that the friction velocity is a more appropriate scaling parameter.
In the present investigation within the range of Reynolds number, «*/T, changes
by only 129,.

The accuracy of W is not good enough to determine whether «* or Uj is the
proper scaling factor for the secondary velocities. Ying (1971) measured secondary
velocities in a rough channel and a smooth one, and thus he was able to obtain
a large variation of u*|Uj, (although the variation in Reynolds number was only
four fold). His results show that the friction velocity is a better scaling parameter
because the secondary-flow data of both the channels when normalized with the
friction velocity give the same results.

The distribution of the secondary-flow stream function i is shown in figure
13 for Reynolds numbers of 6-37 x 104 and 2-15 x 105, The r distributions at the
two Reynolds numbers are similar in shape; both have one circulating flow cell.
The secondary flows are generated by turbulence in such a way as to take fluid
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Ficure 13. Secondary-flow streamlines at (a) Be = 6-37 x 10* (¢,,, = 1-23 x 10-2ft?/s) and

(b) Re = 215 x 105 (¢ .= 4-8 x 10~2ft2/s) for the single-pin geometry.
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momentum from the region of high velocity (largest gap at ¢ = 180°) to the region
of low velocity (smallest gap at 6 = 0). This pattern is similar to the stream
function distribution observed in square ducts, where the secondary flow
transfers the momentum from the centre of the duct to the corner region.

In the case of the two-pin geometry, secondary-flow angles were measured at
a Reynolds number of 1-77 x 105. The magnitude of the secondary-flow angles
is of the same order as those obtained for the single-pin geometry. The normalized
secondary-flow velocities are shown in figure 14. In this case the normalizing
velocity is 3", which is the maximum pipe wall friction velocity, at 6 = 90°.
The distribution of the secondary-flow velocities and the flow angles in the two-
pin case is different from the distribution obtained in the single-pin geometry.
This is more obvious from the stream function distribution shown in figure 15.
The figure shows that, in addition to the flow cell which is present in the single-pin
geometry, one finds a second cell sandwiched between the centre of the pipe
and the pin. The total flow in the second cell is nearly 60 %, of the flow in the
larger cell.

All the previous measurements of secondary flows (Hoagland 1960; Leutheusser
1963; Brundrett & Baines 1964; Ying 1971) were made in ducts having corners.

Hoagland and Ying have reported hot-wire probe interference in the measure-
" ment of secondary flows in the presence of corners. Fortunately, present measure-
ments of secondary flows do not suffer from any probe interference, and con-
sequently they have a slightly better accuracy.
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5. Conclusions

(1) The use of an equivalent diameter in the definition of the Reynolds number
and friction factor enables the equation f = 0-0445 Re~%1%9 to represent the data
to within 2 9, for both the single-pin and two-pin geometries. The friction-factor
data for the single-pin case (or eccentric annulus) is nearly 5 %, higher than the
pipe friction factor (Lawn 1970).

(ii) The shear stress distribution on the pin and pipe surface, if normalized
by the average surface shear stress, is independent of Reynolds number within
the Reynolds-number range 3-73 x 10? to 2-15 x 10%. For the single-pin and
two-pin ducts, the shear stress variation on the pipe and the pin surface was
typically of the order of 129, and 89, respectively. The very nearly uniform
value of the wall shear stress around the core tube for the single-pin and
two-pin arrangements is due to increased momentum transfer by the secondary
flow.

(iii) Calculated shear stress distributions based upon Jonsson & Sparrow’s
(1966) method do not agree with the experimental shear stress distributions
mainly because their method neglects momentum transfer by the secondary
flows.

(iv) U*, y* plots near the pin surface deviate from the universal law of the
wall, typically by 6 9, and 3 %, for the two-pin and single-pin ducts respectively.

(v) Two secondary-flow cells were observed in the two-pin duct as compared
to one in the single-pin case.

The work described in this paper was carried out at Berkeley Nuclear
Laboratories, Central Electricity Generating Board, Berkeley, England. The
author wishes to thank Mr C.J.Lawn of Berkeley Nuclear Laboratories for
many useful discussions.
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